148 research outputs found

    Sliding Nanofriction in Low Dimensional Model-Systems

    Get PDF
    Thanks to novel experimental techniques, physicists are now able to characterize the dynamics of interacting surfaces down to molecular length scales. This possibility has brought fresh interest in the field of friction and has opened a new branch of research, nanotribology, whose aim is the study of tribological properties of sliding systems in terms of fundamental atomistic dissipative mechanisms. Far from being a mere academic problem, understanding and controlling friction at the nano-scales can have a great impact on many technological applications, from energy conversion and saving, to transportation and micro-machining. To reach this goal it is essential to develop theoretical tools able to tackle this problem. In absence of a general theory of friction, molecular dynamics (MD) simulations represent, at the moment, one of the most powerful approaches able to explain and predict the behaviour of nanoscale interfaces. Within the context of nanotribology, this thesis deals with some fundamental aspects of friction between dry crystalline surfaces. Anticipating experiments, it reports results obtained by means of realistic MD simulations of artificial model-systems currently under experimental investigation for application in nanotribology. Qualitatively, the sliding properties of crystalline interfaces can be interpreted based on the mutual interaction between the potential energy landscapes generated by the two touching lattices. These may be described as periodic, two dimensional sequences of wells and hills, corresponding to repulsive and attractive regions of the surfaces. Commensurate geometries correspond to atomically locked configurations, where the atoms of each interacting plane adapt into the wells of the potential landscape generated by the other one. When driven out of equilibrium by an applied shear force, this kind of atomic locking, or interdigitation, generally determines mechanical instabilities, which in turn lead to violent depinning events and high dissipation. Atomic locking may still occur, but may also be avoided in incommensurate interfaces, in which case friction shows more smooth and gentle sliding regimes. The ordered atomic arrangement of crystalline surfaces therefore offers a peculiar way to reduce friction, that is by controlling the geometry of the interface, e.g., by rotating relative to each other two originally aligned and commensurate surfaces. The above picture applies to clean, chemically inert, and atomically flat crystal surfaces. To describe in a quantitative way real systems, one has to take into account many other effects whose interplay determine the overall tribological response. They include elasticity of the surfaces, plastic deformations, and the presence of steps, defects and impurities, not counting chemical interactions and other processes involving the direct excitations of electronic degrees of freedom. From the experimental point of view, the fine features of the interface are hardly accessible because buried. Usually only macroscopic average values of some arising physical quantities are measured, which hinders the possibility to keep track of each distinct mechanism at play. From the theoretical point of view, developing a general theory different from brute-force with quantitative predictive power is also difficult, and phenomenological models are usually adopted which apply only to a reduced number of cases. However, there exist a class of real systems where these complications are absent or mitigated, allowing for detailed experimental and theoretical investigations. On one hand, one (1D) and two dimensional (2D) artificial crystals of charged particles trapped inside optical lattices offer the possibility to study the dynamics of ideal crystalline interfaces with all interface parameters under control, including commensurability and substrate interaction strength. On the other hand, surface science and ultra high vacuum techniques supply clean and atomically flat substrates, suitable for the study of the sliding properties of two dimensional monolayers of adsorbate atoms. Both these systems are very well characterized, and allow for accurate realistic MD simulations where geometrical effects, and interface elastic and plastic deformations effects are investigated in great details. In view of future experiments, this thesis reports results of MD investigations of some fundamental tribological aspects in low dimensional incommensurate interfaces formed by: (i) 1D cold-ion chains trapped in optical lattices, (ii) 2D charged colloids monolayers interacting with laser-induced periodic potentials, (iii) 2D islands of rare gas atoms physisorbed on clean metallic substrates. These simulations show that incommensurate linear chains of trapped cold ions display a rich dynamics when forced to slide over a periodic corrugated potential. That suggests that they can be adopted to investigate in detail the external-load dependent transition between the intermittent stick-slip motion and the smooth sliding regime, as well as the precursor dynamics preceding the onset of motion. Both of them are shown to display paradigmatic behaviours observed in sliding contacts at any length scales. Incommensurate two dimensional interfaces realized by colloidal crystals in periodic fields have been simulated to study the pinning transition from the locked (finite static friction) state, to the ``superlubric'' -- zero static friction -- free-sliding state, which is predicted to occur as a function of decreasing substrate potential strength. In a range of parameters compatible with recent experiments, that is a first order (structural) phase transition of the colloid monolayer, showing analogies with the superlubric to pinned Aubry transition" extensively studied in the one dimensional discrete Frenkel-Kontorova model of dry friction. Moreover, realistic simulations show that relative misfit rotations between the colloidal slider and substrate may significantly affect the dissipation under steady sliding even in genuinely incommensurate geometries, by changing the degree to which the soft deformable slider interdigitates within the hard, non deformable optical substrate. This is a result of more general validity, since a similar mechanism must be at play in any incommensurate 2D crystalline interface. Finally, in order to understand the persistent static friction force observed in quartz crystal microbalance experiments on highly clean surfaces, extensive numerical simulations of substrate-incommensurate model rare-gas islands have been performed, which, in absence of any other sources of pinning, describe how the island edges alone may play the ultimate role in determining the overall barrier preventing the onset of global sliding

    Friction Boosted by Equilibrium Misalignment of Incommensurate Two-Dimensional Colloid Monolayers

    Full text link
    Colloidal 2D monolayers sliding in an optical lattice are of recent importance as a frictional system. In the general case when the monolayer and optical lattices are incommensurate, we predict two important novelties, one in the static equilibrium structure, the other in the frictional behavior under sliding. Structurally, realistic simulations show that the colloid layer should possess in full equilibrium a small misalignment rotation angle relative to the optical lattice, an effect so far unnoticed but visible in some published experimental moir\'e patterns. Under sliding, this misalignment has the effect of boosting the colloid monolayer friction by a considerable factor over the hypothetical aligned case discussed so far. A frictional increase of similar origin must generally affect other incommensurate adsorbed monolayers and contacts, to be sought out case by case.Comment: 9 pages, 11 figures (including Supplemental Material

    Finite-temperature phase diagram and critical point of the Aubry pinned-sliding transition in a 2D monolayer

    Get PDF
    The Aubry unpinned--pinned transition in the sliding of two incommensurate lattices occurs for increasing mutual interaction strength in one dimension (1D1D) and is of second order at T=0T=0, turning into a crossover at nonzero temperatures. Yet, real incommensurate lattices come into contact in two dimensions (2D2D), at finite temperature, generally developing a mutual Novaco-McTague misalignment, conditions in which the existence of a sharp transition is not clear. Using a model inspired by colloid monolayers in an optical lattice as a test 2D2D case, simulations show a sharp Aubry transition between an unpinned and a pinned phase as a function of corrugation. Unlike 1D1D, the 2D2D transition is now of first order, and, importantly, remains well defined at T>0T>0. It is heavily structural, with a local rotation of moir\'e pattern domains from the nonzero initial Novaco-McTague equilibrium angle to nearly zero. In the temperature (TT) -- corrugation strength (W0W_0) plane, the thermodynamical coexistence line between the unpinned and the pinned phases is strongly oblique, showing that the former has the largest entropy. This first-order Aubry line terminates with a novel critical point T=TcT=T_c, marked by a susceptibility peak. The expected static sliding friction upswing between the unpinned and the pinned phase decreases and disappears upon heating from T=0T=0 to T=TcT=T_c. The experimental pursuit of this novel scenario is proposed.Comment: 9 pages, 9 figure

    Friction of Physisorbed Nanotubes: Rolling or Sliding?

    Get PDF
    The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essentially inaccurate. NTs tend to flatten at the interface with the substrate and upon driving they can either roll or slide depending on their size and on their relative orientation with the substrate. In the epitaxially aligned orientation we find that rolling is always the main mechanism of motion, producing a kinetic friction linearly growing with the number of walls, in turn causing an unprecedented supra-linear scaling with the contact area. A 30 degrees misalignment raises superlubric effects, making sliding favorable against rolling. The resulting rolling-to-sliding transition in misaligned NTs is explained in terms of the faceting appearing in large multi-wall tubes, which is responsible for the increased rotational stiffness. Modifying the geometrical conditions provides an additional means of drastically tailoring the frictional properties in this unique tribological system

    CNN-based fast source device identification

    Full text link
    Source identification is an important topic in image forensics, since it allows to trace back the origin of an image. This represents a precious information to claim intellectual property but also to reveal the authors of illicit materials. In this paper we address the problem of device identification based on sensor noise and propose a fast and accurate solution using convolutional neural networks (CNNs). Specifically, we propose a 2-channel-based CNN that learns a way of comparing camera fingerprint and image noise at patch level. The proposed solution turns out to be much faster than the conventional approach and to ensure an increased accuracy. This makes the approach particularly suitable in scenarios where large databases of images are analyzed, like over social networks. In this vein, since images uploaded on social media usually undergo at least two compression stages, we include investigations on double JPEG compressed images, always reporting higher accuracy than standard approaches
    • …
    corecore